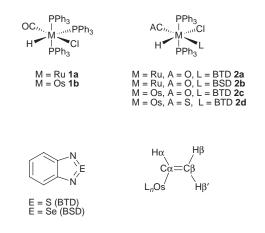
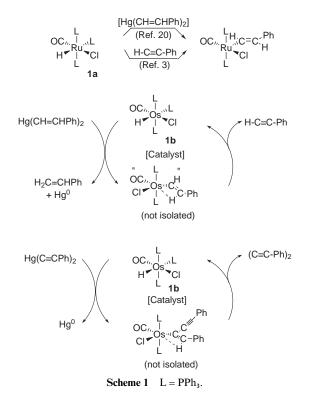
Alkenyl and alkynyl complexes of osmium(II) derived from [OsH(Cl)(CO)(BTD)(PPh₃)₂] (BTD = 2,1,3-benzothiadiazole)

Anthony F. Hill* and James D. E. T. Wilton-Ely

Centre for Chemical Synthesis, Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK SW7 2AY. E-mail: a.hill@ic.ac.uk


Received 8th July 1998, Accepted 17th August 1998

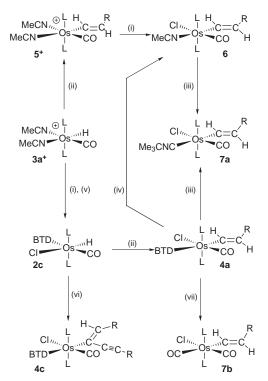
DALTON FULL PAPER


Treatment of $[OsH(CA)(NCMe)_2(PPh_3)_2]^+$ (A = O or S) with $[NEt_4]Cl$ and 2,1,3-benzothiadiazole (BTD) provided $[OsH(Cl)(CA)(BTD)(PPh_3)_2]$ (A = O or S). Under mild conditions, the complex $[OsH(Cl)(CO)(BTD)(PPh_3)_2]$ hydroosmiates ethynyltoluene, ethyne and di(4-tolyl)butadiyne to provide vinyl complexes [Os(CH=CHR)Cl(CO)(BTD)- $(PPh_3)_2$] (R = C₆H₄Me-4), [Os(CH=CH₂)Cl(CO)(BTD)(PPh_3)_2] and [Os{C(C=CR)=CHR}Cl(CO)(BTD)(PPh_3)_2]. Complex $[OsH(CO)(NCMe)_2(PPh_3)_2]^+$ reacted with HC=CR to provide $[Os(CH=CHR)(CO)(NCMe)_2(PPh_3)_2]^+$ which is converted by [NEt₄]Cl into [Os(CH=CHR)Cl(CO)(NCMe)(PPh₃)₂]. Treatment of [Os(CH=CHR)Cl(CO)- $(BTD)(PPh_3)_2$ with CNCMe₃ or CO provided $[Os(CH=CHR)Cl(CO)(L)(PPh_3)_2]$ (L = CNCMe₃ or CO). The dithiocarbamate complex [Os(CH=CHR)(S2CNMe2)(CO)(PPh3)2] and the osmatetraborane [Os(CH=CHR)-(B₃H₈)(CO)(PPh₃)₂] resulted from the reactions of [Os(CH=CHR)Cl(CO)(BTD)(PPh₃)₂] with Na[S₂CNMe₂] and $[NBu_4^n][B_3H_8]$, respectively, whereas with $K[HB(pz)_3]$ (pz = pyrazolyl) initially $[Os(CH=CHR)(CO)(PPh_3)_2 \{\eta^2$ -HB(pz)_3\}] was formed which is converted into [Os(CH=CHR)(CO)(PPh_3){HB(pz)_3}] on heating. No intermediates are however observed in the corresponding reaction with 1,4,7-trithiacyclononane ([9]aneS₃) to provide [Os(CH=CHR)(CO)(PPh₃)([9]aneS₃)]⁺. The alkynyl complex [Os(C=CR)Cl(CO)(BTD)(PPh₃)₂] was obtained from either (i) the reaction of [OsH(Cl)(CO)(BTD)(PPh₃)₂] with [Hg(C=CR)₂] or (ii) [Os(CH=CHR)Cl(CO)(BTD)(PPh₃)₂] with an excess of HC=CR. Treatment of [Os(C=CR)Cl(CO)(BTD)(PPh₃)₂] with Na[S₂CNMe₂] or alternatively [Os(CH=CHR)(S₂CNMe₂)(CO)(PPh₃)₂] with an excess of HC=CR provided [Os(C=CR)(S₂CNMe₂)(CO)(PPh₃)₂], which can also be obtained from [OsH(S₂CNMe₂)(CO)(PPh₃)₂] and [Hg(C=CR)₂]. The BTD in [Os(C=CR)Cl(CO)-(BTD)(PPh₃)₂] is substituted by CNCMe₃ to provide [Os(C≡CR)Cl(CO)(CNCMe₃)(PPh₃)₂]. The reaction of [OsH(Cl)(CS)(BTD)(PPh₃)₂] with HC=CR provided [Os(CH=CHR)Cl(CS)(BTD)(PPh₃)₂] which in contrast to [Os(CH=CHR)Cl(CO)(BTD)(PPh₃)₂] reacts with carbon monoxide to provide the thiocinnamoyl complex [Os(η²-SCCH=CHR)Cl(CO)(PPh₃)₂].

Introduction

The hydrometallation of alkynes by hydrido complexes of osmium and ruthenium provides a facile entry into the chemistry of σ -vinyl complexes.¹ The readily accessible complex [RuH(Cl)(CO)(PPh₃)₃] **1a**² has been shown to react with alkynes^{3,4} and diynes⁵ to provide co-ordinatively unsaturated σ -vinyl or σ -enynyl complexes which are themselves valuable precursors to a wide range of complexes bearing isocyanide,^{6,7} poly(azolyl)borate,⁸ triboronate,⁹ and trithiacyclononane,¹⁰ dithiocarbamate,¹¹ carboxylate¹² and phosphoniodithiocarboxylate¹³ coligands. For many of these compounds the co-ordinatively saturated adducts [Ru(CH=CHR)Cl(CO)(L)- $(PPh_3)_2$ [L = 2,1,3-benzothiadiazole (BTD) or 2,1,3-benzoselenadiazole (BSD)] serve equally well as precursors by virtue of the lability of the heterocyclic ligands. These vinyl complexes result under mild conditions from the reactions of the hydrido complexes $[RuH(Cl)(CO)(L)(PPh_3)_2]$ (L = BTD 2a or BSD 2b)¹⁴ with alkynes and alkynols.¹⁵ Esteruelas, Oro and Werner¹⁶ have developed an enormously rich chemistry based on the related complexes $[MH(Cl)(CO)(PPr_3^i)_2]$ (M = Ru or Os)¹⁶ which are stable and highly reactive 16-electron species due to the steric encumbrance of the PPrⁱ₃ ligands which precludes the formation of tris(phosphine) complexes in contrast to the PPh₃ relatives. Whilst the PPrⁱ₃ class of complex allows the study of osmium σ -vinyl chemistry in parallel with that of ruthenium, the hydrometallation of alkynes by [OsH(Cl)(CO)(PPh₃)₃] 1b has met with very limited success. Roper and co-workers¹⁷ have

described an unusual cyclotrimerisation process which occurs with ethyne, the initial stages of which are consistent with the intermediate formation of $[Os(CH=CH_2)Cl(CO)(PPh_3)_2]$. However, in general it appears in the equilibrium reaction with alkynes that the hydride precursor is preferred to the alkyne insertion product, in distinct contrast to the chemistry of ruthenium. This interpretation follows from two observations (Scheme 1): whilst the complex [Ru(CH=CHPh)Cl- $(CO)(PPh_3)_2]$ may be obtained from the reaction of **1a** with either ethynylbenzene³ or $[Hg(CH=CHPh)_2]$,¹⁸ there is no apparent reaction between the osmium analogue **1b** and



ethynylbenzene. Furthermore, with [Hg(CH=CHPh)2] catalytic demercuriation occurs to regenerate 1b, elemental mercury, and presumably styrene and ethynylbenzene. This is consistent with the formation of [Os(CH=CHPh)Cl(CO)(PPh₃)₂] which under the reaction conditions (refluxing toluene) and in the presence of liberated PPh₃ undergoes β-Os-H elimination to generate ethynylbenzene and 1b.18 The second illustration comes from the reactions of 1 with [Hg(C=CPh)₂]: in the case of ruthenium (1a) the product is the enynyl complex $[Ru{C(C=CPh)=CHPh}]$ -Cl(CO)(PPh₃)₂]¹⁹ which is also obtained from the reaction of 1a with diphenylbutadiyne.⁵ This complex catalyses the demercuriation of [Hg(C=CPh)₂] to provide elemental mercury and diphenylbutadiyne and may be recovered after the catalysis. Although 1b will also catalyse this demercuriation, the organometallic product obtained after catalysis is the starting hydride complex 1b, rather than an enynyl derivative (Scheme 1).²⁰

The complex $[OsH(O_2CCF_3)(CO)(PPh_3)_2]$ has been shown to react with tolane (PhC=CPh) to provide the *cis*-stilbenyl complex $[Os(CPh=CHPh)(O_2CCF_3)(CO)(PPh_3)_2]$.^{21,22} This result, taken in combination with the above considerations, led us to conclude that the hiatus in the potential alkyne hydrometallation chemistry based on **1b** lies in (i) the competitive coordination of the third phosphine ligand and (ii) the inherent stability of **1b** relative to alkyne insertion products. We have therefore investigated the synthesis of the BTD complex [OsH-(Cl)(CO)(BTD)(PPh_3)_2] **2c**, and now show that a rich organometallic chemistry is indeed accessible from this species.

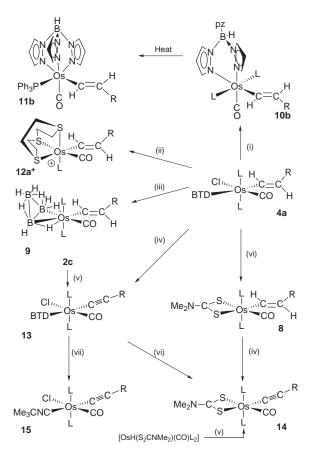
Results and discussion

Our initial attempt to prepare $[OsH(Cl)(CO)(BTD)(PPh_3)_2]$ 2c in a manner analogous to the ruthenium example (2a) failed. Thus heating complex 1b with an excess of BTD in refluxing tetrahydrofuran fails to provide pure 2c. Rather, essentially independent of reaction duration, an equilibrium mixture of colourless 1b and orange 2c is obtained, further supporting the idea that phosphine competes effectively for co-ordination to osmium. An alternative approach was therefore developed to remove this competition. The salt $[OsH(CO)(NCMe)_2(PPh_3)_2]$ - ClO_4 3a·ClO₄ is readily obtained *via* the reaction of 1b with $AgClO_4 \cdot H_2O$ in refluxing acetonitrile.²³ Heating 3a·ClO₄ in refluxing ethanol with an excess of $[NEt_4]Cl$ and BTD provides

Scheme 2 $L = PPh_3$, $R = C_6H_4Me-4$. *Reagents*: (i) $[Et_4N]Cl$; (ii) $HC \equiv CR$; (iii) $CNCMe_3$; (iv) MeCN; (v) BTD; (vi) $RC \equiv C-C \equiv CR$; (vii) CO.

high yields of the desired complex 2c. This complex may be assumed on the basis of spectroscopic data to adopt the stereochemistry shown in Scheme 2, which has been previously established for the ruthenium analogue 2a.¹⁴ Thus the hydride ligand gives rise to a triplet resonance at $\delta - 15.00 [J(PH) = 16.2 \text{ Hz}]$ in the ¹H NMR spectrum, confirming that it is *cis* to two chemically equivalent phosphine ligands. Intense v(OsH) and v(CO)absorptions are visible in the solid state infrared spectrum (Nujol) at 1974 and 1905 cm⁻¹, respectively. The molecular composition is supported by positive ion FAB mass spectroscopy which displays no molecular ion but instead a [M-BTD]⁺ fragment at m/z = 780. Facile loss of the BSD ligand in the FAB mass spectra is a common feature of BSD complexes.14,15,24 Fragmentations are however also observed which involve retention of the BTD ligand, thereby confirming that it is co-ordinated in the complex.

Alkenyl complexes


An instant deep purple coloration is observed on addition of 4-ethynyltoluene to a solution of complex 2c in dichloromethane. A complex formulated as [Os(CH=CHC₆H₄Me-4)-Cl(CO)(BTD)(PPh₃)₂] 4a may be isolated in high yield on addition of ethanol. No v(OsH) absorption is observed in the infrared spectrum (Nujol), only an intense v(CO) absorption at 1899 cm⁻¹. The species formed is confirmed as a vinyl complex from the characteristic resonances exhibited in the ¹H NMR spectrum: a doublet of triplets is observed for the vinylic α -proton to low field at δ 9.08 [$J(H_{\alpha}H_{\beta}) = 17.2$, $J(H_{\alpha}P) = 2.6$ Hz] showing typical coupling to two mutually trans phosphines. The comparatively low field chemical shift for this resonance is consistent with the vinyl ligand being co-ordinated trans to a good donor ligand. The β -proton of the vinyl ligand gives rise to a doublet resonance at δ 5.87. An (AB)₂ system is observed for the tolyl substituent [δ 6.84, 6.97; J(AB) = 7.9 Hz] as well as a singlet resonance at δ 3.03 due to the methyl group. The presence of the BTD ligand is betrayed only by the microanalytical data since IR absorbances for it are typically weak and the ¹H NMR resonances are obscured by the phosphine resonances. The complex is thus as formulated and this is supported by

FAB MS data, and subsequent derived chemistry. In a similar manner, the red parent vinyl analogue [Os(CH=CH₂)Cl(CO)-(BTD)(PPh₃)₂] 4b can also be prepared from 2c and ethyne at ambient temperature and pressure. The ¹H NMR spectrum is more complex than that of 4a, with the α -proton resonating as a low field multiplet at δ 8.57. The β - and β' -protons are observed at δ 4.88 [d, $J(H_{\alpha}H_{\beta}) = 17.6$] and 5.96 [dd, $J(H_{\alpha}H_{\beta'}) = 10.6$, $J(H_{\beta}H_{\beta'}) = 2.2$ Hz], respectively. Perhaps surprisingly, the species 4b can also be prepared from a mixture of 1b and BTD in solution on exposure to a stream of acetylene. This is however not the case with any of the other vinyl complexes discussed here. The purple envnyl complex $Os{C(C=C C_6H_4Me-4$ =CHC₆H₄Me-4 $Cl(CO)(BTD)(PPh_3)_2$] 4c is readily obtained from 2c by the same route employing the diyne (C=CC₆H₄Me-4)₂, which is itself obtained from a metalmediated demercuriation of [Hg(C=CC₆H₄Me-4)₂].²⁵ Spectroscopic data are essentially similar to those of the species described above with the exceptions of (i) the vinylic proton which was found to resonate as a broad singlet at δ 6.43 in the ¹H NMR spectrum, and (ii) the weak $v(C \equiv C)$ IR absorption due to the free alkynyl group (Nujol: 2158, 2136 cm⁻¹). The stereochemistry of the equatorial plane of the complexes 4 does not follow unambiguously from spectroscopic data, however the geometry of the 16-electron complexes [Ru(CPh=CHPh)Cl-(CO)(PPh₃)₂],³ [Ru(C₆H₄Me-4)Cl(CO)(PPh₃)₂],¹⁸ [Ru(C₆H₄Me-2)Cl(CO)(PPh₃)₂]¹⁸ and [Ru(CH=CHCH₂PPh₃)Br(CO)(PPh₃)₂]- ${\rm PF_6}^4$ approaches square-based pyramidal with the $\sigma\text{-}\text{organyl}$ ligand occupying an apical site trans to the vacant co-ordination site. It is therefore reasonable that the labile BTD ligand co-ordinates in this site.

The complex $3a^+$ itself provided a useful entry point into further $osmium(II) \sigma$ -vinyl chemistry: the pale-brown vinyl salt $[Os(CH=CHC_6H_4Me-4)(CO)(NCMe)_2(PPh_3)_2]ClO_4$ 5·ClO₄ is obtained on stirring with an excess of 4-ethynyltoluene for 3 h at room temperature. Singlet resonances are visible in the ¹H NMR spectrum at δ 1.74 and 1.85 for the two chemically distinct and mutually *cis* co-ordinated acetonitrile ligands. The facile loss of the nitrile ligands is a feature of the FAB mass spectrum with isotopic envelopes being observed at m/z = 902for $[M - MeCN]^+$ and 859 for $[M - 2MeCN]^+$, in addition to a molecular ion observed at m/z = 945. One acetonitrile ligand in the complex 5^+ is labile: thus treating $5 \cdot \text{ClO}_4$ with [NEt₄]Cl provides the complex [Os(CH=CHC₆H₄Me-4)Cl(CO)(NCMe)- $(PPh_3)_2$] 6. Spectroscopic data for this complex are identical to those for the complex obtained from the reaction of 4a with acetonitrile. This is perhaps surprising since the nitrile in 5^+ which is trans to the vinyl ligand might have been expected to be the more labile of the two. Such a regioselective substitution is reminiscent of the carbonylation of the complex [RuH(CO)-(NCMe)₂(PPh₃)₂]ClO₄ which proceeds under ambient conditions to provide cct-[RuH(CO)2(NCMe)(PPh3)2]ClO4 and only under higher pressures and temperatures to *mer-trans*-[RuH(CO)₃(PPh₃)₂]ClO₄.^{23,26}

The BTD ligand of complex 4a is labile, as had been demonstrated for the related σ -aryl complex [Os(C₆H₄Me-4)Cl(CO)-(BTD)(PPh₃)₂]:²⁴ addition of an excess of pivaloisocyanide (CNCMe₃) to 4a leads to instant decolorisation of the purple solution and formation of the species [Os(CH=CHC₆H₄Me-4)Cl(CO)(CNBu^t)(PPh₃)₂] 7a. The same isomer of 7a is obtained on treating 6 with CNCMe₃. Two intense absorptions are noted in the infrared spectrum (CH₂Cl₂) at 2144 and 1943 cm^{-1} attributed to v(CN) and v(CO), respectively. A singlet resonance observed at δ 0.97 in the ¹H NMR spectrum is assigned to the *tert*-butyl group in addition to a singlet at δ 2.25 for the tolyl methyl protons. The complex gives rise to an $(AB)_2$ system at δ 6.80, 6.92 [J(AB) = 7.9 Hz] and a lower field resonance at δ 7.89 due to the α -vinylic proton. This appears as a doublet of triplets showing coupling to the two mutually trans phosphines of 2.0 Hz as well as to the β -vinylic proton $[J(H_{\alpha}$ - H_{β}) = 18.3 Hz]. A fragmentation for loss of CNBu^t is observed in the FAB mass spectrum at m/z = 896. As with 4, the stereochemistry does not follow definitely from spectroscopic data, however the *trans* influence of the σ -organyl ligand may be expected to favour a vacant co-ordination site to this ligand prior to isocyanide co-ordination. In a similar manner, treating 4a with carbon monoxide (1 atmosphere) leads to decolorisation and formation of the *cis*-dicarbonyl complex 7b. In this case the stereochemistry at osmium is unambiguous, given the appearance of two v(CO) IR absorptions [CH₂Cl₂, 2021, 1953 cm⁻¹] and a singlet ³¹P-{¹H} NMR resonance (δ -6.45).

Treatment of complex **4a** with an ethanolic solution of $Na[S_2CNMe_2]\cdot 2H_2O$ results in a yellow solution from which the pale yellow complex [Os(CH=CHC_6H_4Me-4)(S_2CNMe_2)(CO)-(PPh_3)_2] **8** can be isolated in high yield (88%) (Scheme 3). The

Scheme 3 $L = PPh_3$, $R = C_6H_4$ Me-4. *Reagents*: (i) K[HB(pz)_3]; (ii) [9]aneS₃; (iii) [Buⁿ₄N][B₃H₈]; (iv) HC=CR, heat; (v) [Hg(C=CR)_2]; (vi) Na[S₂CNMe₂]·2H₂O; (vii) CNCMe₃.

methyl groups of the dithiocarbamate ligand give rise to two singlet resonances at δ 2.31 and 2.58, to slightly higher field than the tolyl methyl singlet at δ 2.20. The protons of the vinyl and the aromatic protons of the tolyl group also give rise to characteristic features. New bands of medium intensity and characteristic of the dithiocarbamate ligand were observed in the 'fingerprint' region of the infrared spectrum (Nujol) along with an intense v(CO) absorption at 1887 cm⁻¹. The stereochemistry at ruthenium follows from the appearance of distinct NCH₃ environments [δ (¹H) 2.31, 2.58], a singlet ³¹P-{¹H} NMR resonance (δ 8.2), and the virtual triplet patterns observed for the phenyl resonances in the ¹³C NMR spectrum, characteristic of a *trans*-Os(PPh₃)₂ arrangement.

Although we have previously reported the synthesis of ruthenatetraboranes of the form $[RuR(B_3H_8)(CO)(PPh_3)_2]$ (R = H, halide, aryl, vinyl or enynyl),⁹ the only known osmatetraborane is $[OsH(B_3H_8)(CO)(PPh_3)_2]$ obtained from the reaction of complex 1b with $Tl[B_3H_8]$.²⁷ The complex $[Os(CH=CHC_6H_4-Me-4)(B_3H_8)(CO)(PPh_3)_2]$ 9 is however readily obtained on

treatment of 4a with (less toxic) [NBuⁿ₄][B₃H₈] in dichloromethane. The inequivalence of the phosphine environments is indicated by the AB system observed in the ³¹P-{¹H} NMR spectrum δ at 7.1, 7.9 with a coupling typical of a *trans*-OsP₂ arrangement [J(AB) = 300.2 Hz]. The inequivalence of the two phosphine environments arises from the butterfly "OsB₃" arrangement which provides endo and exo sites for the two phosphines. Broad resonances arising from the two distinct Os(µ-H)B protons of the triborate ligand are observed at δ -9.70 and -8.54 in the ¹H NMR, along with broad resonances to lower field for the terminal and B(µ-H)B protons and typical features due to the vinyl ligand. The ¹¹B NMR spectrum comprises two resonances at δ 2.6 and -37.2. The ¹¹B NMR spectrum of [OsH(B₃H₈)(CO)(PPh₃)₂] comprises three resonances at δ 1.0, -39.5 and -40.5.²⁷ Thus, in the case of 9, resonances for the two chemically inequivalent osmium bound boron nuclei are not resolved. Given that the ³¹P-{¹H} NMR spectrum is a sharply defined AB system, it may be assumed that this coincidence of resonances is due to an insensitivity of chemical shift towards the trans influences of the carbonyl and vinyl ligands rather than a fluxional process involving rotation of the ligand, which would chemically equilibrate the two phosphine environments.

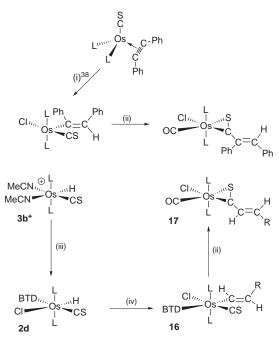
The complexes $[Ru(R)Cl(CO)(PPh_3)_2]$ (R = aryl, vinyl or enynyl) react with K[HB(pz)₃] (pz = pyrazol-1-yl) to provide the chiral monophosphine derivatives [RuR(CO)(PPh₃)-{HB(pz)₃}].⁸ More recently we have isolated the complexes $[RuH(CA)(PPh_3)_2\{\eta^2-HB(pz)_3\}] \quad (A = O \text{ or } S) \text{ as inter-}$ mediates in the formation of $[RuH(CA)(PPh_3){HB(pz)_3}]$ from [RuH(Cl)(CA)(PPh₃)₃] and K[HB(pz)₃],²⁸ building on similar observations by Esteruelas for related reactions of [MH(Cl)- $(CO)(PPr_{3}^{i})_{2}$ (M = Ru or Os).²⁹ In the reactions of the σ organyl complexes of ruthenium no such intermediate was observed, however the complex $[Os(C_6H_5)(CO)(PPh_3)_2 \{\eta^2 -$ HB(pz)₃] 10a could be isolated from the reaction of $[Os(C_6H_5)Cl(CO)(PPh_3)_2]$ and $K[HB(pz)_3]$, and subsequently converted thermally (toluene reflux) into [Os(C₆H₅)(CO)-(PPh₃){HB(pz)₃}] 11a.²⁸ By analogy, the reaction of K[HB(pz)₃] with 4a in dichloromethane at room temperature provides the $[Os(CH=CHC_6H_4Me-4)(CO)(PPh_3)_2\{\eta^2-HB(pz)_3\}]$ complex 10b. This formulation was assigned principally on the basis of the AB system observed in the ³¹P-{¹H} NMR spectrum at $\delta - 1.8$ and 0.8 [J(AB) = 348.8 Hz] which clearly indicated nonequivalence of phosphine environments. This may be compared with the values reported for **10a** [δ 2.34, -2.62, ${}^{2}J(AB) = 301.8$ Hz].²⁸ In the ¹H NMR spectrum seven resonances are observed in characteristic chemical shift positions for the pyrazolyl protons showing typical ${}^{3}J(HH)$ couplings of approximately 2 Hz. The remaining two resonances are presumed to be obscured by phosphine activity. The FAB mass spectrum exhibited no molecular ion, but instead a fragmentation for $[M - CO]^+$ at m/z = 1048. Tridentate co-ordination of the 'scorpionate' pyrazolylborate ligand is achieved by heating 10b under reflux in toluene. The v(CO) absorption (CH₂Cl₂) at 1913 cm⁻¹ in the precursor is shifted marginally to 1918 cm⁻¹ for the resulting monophosphine product [Os(CH=CHC₆H₄Me-4)(CO)(PPh₃)- $\{HB(pz)_3\}$] 11b. This species gives rise to a singlet resonance at δ 11.2 in the ³¹P-{¹H} NMR spectrum. The spectroscopic data associated with the vinyl ligand and its substituents remain essentially unchanged. Little change (ca. 0.2 ppm) is also observed in the chemical shift values for the pyrazolyl protons despite the transformation between bidentate and tridentate co-ordination.

The similarity between the co-ordination chemistry of the anionic 'HB(pz)₃' ligand and the neutral macrocycle 1,4,7-trithiacyclononane [9]aneS₃ follows from both showing a strong tendency to adopt a facial 6-electron donor co-ordination mode.^{10,30,31} The organometallic chemistry of this ligand to osmium is however limited to the hydride complex [OsH(CO)-(PPh₃)([9]aneS₃)]PF₆ and the arene complex [Os(η -MeC₆H₄Prⁱ-

4)([9]aneS₃)][BPh₄]₂.³² A reaction between 4a and [9]aneS₃ was found to proceed readily at room temperature to provide within 2 h the complex [Os(CH=CHC₆H₄Me-4)(CO)(PPh₃)([9]aneS₃)]⁺ $12a^+$, which may be isolated as the hexafluorophosphate salt $12a \cdot PF_6$ in 66% yield. It is noteworthy that despite these mild conditions no intermediate complex was observed involving reduced denticity of the [9]aneS₃ macrocycle in contrast to the isolation of 10b above. The ³¹P-{¹H} NMR spectrum comprises a single resonance at δ 6.0 confirming that the macrocycle is co-ordinated in a tridentate manner; bidentate co-ordination would impose distinct chemical environments on the two phosphines (see above). The thiacycle gives rise to multiplet resonances between δ 1.73 and 3.06 in the ¹H NMR spectrum, due to the chirality at osmium rendering each of the twelve proton environments chemically distinct. The continuing presence of the vinyl ligand is confirmed by the resonances at δ 7.68 [dd, H_a, $J(H_{\alpha}H_{\beta}) = 17.1$, $J(H_{\alpha}P) = 5.1$ Hz] and 6.64 (d, H_{\beta}). Fragmentation of the [9]aneS₃ ligand is observed under FAB MS conditions involving loss of units of ethene at m/z = 721 for [M – $2C_2H_4$ ⁺ in addition to a molecular ion apparent at m/z = 779. In a similar manner the phenyl complex [Os(C₆H₅)(CO)- $(PPh_3)([9]aneS_3)]^+$ could be isolated as the PF₆ salt 12b·PF₆ from the reaction of [Os(C6H5)Cl(CO)(PPh3)2] with [9]aneS3 and NH₄PF₆. Spectroscopic data (Experimental section) which characterise $12b \cdot PF_6$ are directly comparable to those for $12a \cdot PF_6$ and call for no further comment.

Alkynyl complexes (Scheme 3)

We have previously shown that the reactions of Group 8 hydrido complexes, L_nMH, with bis(alkynyl)mercurials [Hg-(C=CR)₂] can (to date) take one of three interrelated courses: (i) formation of enynyl derivatives $L_{(n-1)}MC(C\equiv CR)=CHR$;^{5,19} (ii) formation of alkynyl complexes $L_nMC\equiv CR^{20}$ or (iii) catalytic formation of 1,3-diynes and reformation of the original hydride complex.²⁰ Amongst the hydride complexes which fall into the second category is the BSD complex 2b and the resulting product [Ru(C=CR)Cl(CO)(BSD)(PPh₃)₂] serves as a precursor to other alkynyl complexes due to the lability of the BSD ligand. The reaction of 2c with bis(4-ethynyltolyl)mercury(II) was therefore investigated, given that it has already been noted above that 1b fails to provide an alkynyl complex, but is rather recovered after catalysing the formation of (C=CC₆H₄Me-4)₂. Stirring a dichloromethane solution of 2c with a slight excess (2 equivalents) of [Hg(C=CC₆H₄Me-4)₂] resulted in a change to deep red and deposition of elemental mercury. The brick-red product, which could be isolated by addition of ethanol, was found to be [Os(C=CC₆H₄Me-4)Cl(BTD)(CO)(PPh₃)₂] 13, by analogy with the related ruthenium chemistry and in contrast to the behaviour of 1b. This complex also results in good yield from the reaction of 2c or 4a with an excess of 4-ethynyltoluene in refluxing tetrahydrofuran. Two characteristic absorptions in the infrared spectrum (Nujol) at 2105 and 1920 cm⁻ may be assigned to v(C=C) and v(CO) vibrations, respectively. The ¹H NMR spectrum included resonances at δ 2.29 (CH₃) and 7.41 $[C_6H_4; J(AB) = 8.2 \text{ Hz}$, second doublet obscured by PPh₃] due to the tolyl group. The FAB mass spectrum revealed a molecular ion at m/z = 1031 (3%), however the heaviest predominant peak was, unsurprisingly, that due to loss of the BTD ligand at m/z = 894 (57%). Once again the BTD ligand is assumed to be trans to the strongly trans-effective alkynyl ligand.


Treatment of complex 13 with Na[S₂CNMe₂]·2H₂O provides the brown species [Os(C=CC₆H₄Me-4)(S₂CNMe₂)(CO)(PPh₃)₂] 14 which displays ν (C=C) and ν (CO) absorptions in the infrared spectrum (Nujol) at 2088 and 1916 cm⁻¹, respectively, to slightly lower energy of those for the precursor 13. The data for this complex are similar to those of the precursor with the exception of the features that arise from the dithiocarbamate ligand: as with 8, two singlet resonances are observed in the ¹H

NMR spectrum at δ 2.24 and 2.30 corresponding to the chemically distinct methyl groups of the dithiocarbamate ligand, supporting the proposed stereochemistry. Two alternative routes to the complex 14 were also developed: the reaction between 3a·ClO₄ and Na[S₂CNMe₂] provides high yields of the complex [OsH(S2CNMe2)(CO)(PPh3)2], which on heating with $[Hg(C=CC_6H_4Me-4)_2]$ in toluene produces 13. Alternatively, the reaction of 8 with an excess of HC≡CC₆H₄Me-4 in refluxing toluene provides good yields of 14. Recently, there have appeared a number of such alkenyl/alkynyl exchange reactions based on ruthenium and osmium,^{16,33,34} although none involved dithiocarbamate complexes. The presumed mechanism of ultimate σ metathesis most likely involves oxidative addition of the terminal alkyne to provide a metal(IV) species which subsequently reductively eliminates alkene. The growing ubiquity of formally tetravalent intermediates or isolated compounds in the organometallic chemistry of ruthenium and osmium is an emergent feature of the last decade. In part this may be due to the increasing popularity of highly basic (and sterically demanding) trialkylphosphines. Such tetravalent species are also apparently mechanistically significant for PPh₃ complexes of these metals. They are however seldom observed, presumably because the less basic triarylphosphine is less effective in prolonging the lifetime of these more electronegative oxidation states. For the alkenyl/alkynyl σ -metathesis process to be facile, a vacant co-ordination site is desirable for the oxidative addition step to proceed. The strong chelation of the dithiocarbamate ligand is presumably responsible for the comparatively high temperatures required in the present process (110 °C), which probably proceeds via phosphine dissociation rather than chelate opening. As with the vinyl complex 8, treatment of 13 with CNCMe₃ provides the orange-brown isocyanide adduct [Os(C=CC₆H₄Me-4)Cl(CO)(CNBu^t)(PPh₃)₂] 15 which displays two intense absorptions at 2157 and 1961 cm^{-1} in the infrared spectrum (CH₂Cl₂) for the v(CN) and v(CO) absorptions, respectively. The comparatively weak v(C=C) is not however unambiguously identifiable. The methyl substituents of the isocyanide ligand give rise to a singlet resonance (δ 0.84) in the ¹H NMR spectrum to higher field than the methyl resonance of the acetylide ligand at δ 2.23.

Thiocarbonyl complexes (Scheme 4)

In our studies of carbonyl vinyl complexes of ruthenium we have found it useful also to study, in parallel, the chemistry of the thiocarbonyl analogues, where possible. This is due to the clearly enhanced propensity of thiocarbonyl ligands to enter into migratory insertion processes.^{10,35-41} Two recent observations serve to highlight this process. (i) Whilst [Ru(CH= CHC₆H₄Me-4)Cl(CO)(PPh₃)₂] reacts with [9]aneS₃ and [NH₄]-PF₆ to provide the vinyl salt [Ru(CH=CHC₆H₄Me-4)(CO)- $(PPh_3)([9]aneS_3)]PF_6$, the thiocarbonyl analogue provides a thiocinnamoyl complex [Ru(η²-SCCH=CHC₆H₄Me-4)(PPh₃)([9]aneS₃)]PF₆,¹⁰ (ii) Roper and co-workers³⁷ have shown that the ruthenium silvl complexes $[Ru(SiR_3)Cl(CA)(PPh_3)_2]$ (A = O or S) react rapidly with CO to provide, respectively, [Ru(SiR₃)Cl- $(CO)_2(PPh_3)_2$] and the novel silathioacyl complex $[Ru(\eta^2 -$ SCSiR₃)Cl(CO)(PPh₃)₂], thereby showing that these ideas are not limited to carbon-based migrating ligands.

The possibility of applying the principles above to osmium thiocarbonyl chemistry was also therefore briefly investigated: the complex $[OsH(Cl)(CS)(PPh_3)_3]$ 1c⁴² was treated in a completely analogous manner to 1b to provide the salt $[OsH(CS)(NCMe)_2(PPh_3)_2]ClO_4$ 3b·ClO₄ which reacts with $[NEt_4]Cl$ and BTD to provide $[OsH(Cl)(CS)(BTD)(PPh_3)_2]$ 2d in 99% yield. This species reacted immediately with 4-ethynyltoluene to provide $[Os(CH=CHC_6H_4Me-4)Cl(CS)(BTD)(PPh_3)_2]$ 16. Spectroscopic data for 16 are immediately comparable to those for 4a with the exception of the characteristically intense $\nu(CS)$

Scheme 4 $L = PPh_3$, $R = C_6H_4$ Me-4. *Reagents*: (i) HCl; (ii) CO;³⁸ (iii) [Et₄N]Cl, BTD; (iv) HC=CR.

absorption which appears at 1272 cm⁻¹ in the infrared spectrum. The one previous example of an osmium vinylthiocarbonyl complex [Os(CPh=CHPh)Cl(CS)(PPh₃)₂] results from the reaction of the tolane complex [Os(PhC=CPh)(CS)(PPh₃)₂] with hydrogen chloride.³⁸ This complex is so far unique because the synthetic route to [Os(PhC=CPh)(CS)(PPh₃)₂] from [Os(CO)(CS)(PPh₃)₃] and PhC=CPh is not yet generally applicable to other alkynes, e.g. reaction of [Os(CO)(CS)(PPh₃)₃] with ethyne provides instead the osmaarene [Os(SCCHCHCHCH)-(CO)(PPh₃)₂].³⁹ The complex [Os(CPh=CHPh)Cl(CS)(PPh₃)₂] reacts with carbon monoxide to provide the thiostilbenoyl complex [Os(η²-SCCPh=CHPh)Cl(CO)(PPh₃)₂] in an analogous manner to the carbonylation of [Os(C₆H₄Me-4)Cl(CS)-(PPh₃)₂].⁴⁰ The vinyl complex [Os(CH=CHC₆H₄Me-4)Cl(CS)-(BTD)(PPh₃)₂] 16 may be assumed to be in equilibrium with the co-ordinatively unsaturated complex [Os(CH=CHC₆H₄Me-4)-Cl(CS)(PPh₃)₂] and accordingly this was treated with a stream of carbon monoxide. The resulting product proved to be the thiocinnamoyl complex [Os(n²-SCCH=CHC₆H₄Me-4)Cl(CO)-(PPh₃)₂] 17, in contrast to the formation of 7b upon carbonylation of 4b. No intermediate was isolated from this reaction. The infrared spectrum of 17 (Nujol), whilst devoid of the characteristic absorption for a terminal thiocarbonyl ligand, contained a series of bands at 1589, 1562, 1326, 1307, 1287, 1241, 970 and 919 cm⁻¹ which are typical of such a metallathiirene motif.^{10,38–41,43,44}

Conclusion

The results described above taken together illustrate that there is indeed a potentially rich alkyne-derived organometallic chemistry for the "OsH(Cl)(CO)(PPh₃)₂" fragment. The obstacle to such chemistry appears to be the unsuitability of complex **1b** as a reagent due to the lesser tendency of PPh₃ to dissociate under mild conditions. This problem has been overcome by conversion into the more labile complex [OsH(Cl)(CO)(BTD)(PPh₃)₂] **2c**, which appears to provide synthetically useful amounts of the desired 16-electron species "OsH(Cl)(CO)(PPh₃)₂" in solution. This breakthrough has provided access to new alkenyl, alkenynyl, alkynyl and thioacyl complexes of divalent osmium, which in contrast to the rapidly developing chemistry of [OsH-(Cl)(CO)(PPrⁱ₃)₂] involves air-stable compounds throughout. Furthermore, entry points into the organometallic chemistry of osmium complexes of [9]aneS₃, HB(pz)₃ and triborate ligands have been demonstrated. The utility of $[OsH(CO)(NCMe)_2-(PPh_3)_2]CIO_4$ **3a**·CIO₄ and $[OsH(CI)(CS)(BTD)(PPh_3)_2]$ **2d** as alternative synthons for alkyne hydroosmation has also been briefly shown to offer promise.

Experimental

General comments

All experiments were routinely carried out under aerobic conditions unless otherwise stated. Solvents were used as received from commercial sources. The complexes [OsH(Cl)(CO)- $(PPh_3)_3]_2^2$ [OsH(Cl)(CS)(PPh_3)_3]⁴² and [OsH(CO)(NCMe)_2-(PPh₃)₂]ClO₄²³ and the reagents [NBu₄][B₃H₈],⁴⁵ K[HB(pz)₃]⁴⁶ and (C=CC₆H₄Me-4)₂^{20,25} have been described elsewhere. The complex $[Os(C_6H_5)Cl(CO)(PPh_3)_2]$ was prepared according to the method described for the synthesis of [Os(C₆H₄Me-4)-Cl(CO)(PPh₃)₂].⁴⁰ Infrared, NMR and FAB MS data were obtained using a Mattson Research Series IR spectrometer, JEOL JNM-EX270, and Autospec Q instruments, respectively. Phosphine-associated infrared data are not reported. Typically, ¹H NMR resonances for the BTD and BSD ligands were obscured by phosphine resonances; "tv" indicates a virtual triplet with 'apparent' coupling constants given. The ¹³C NMR resonances were indicative of a trans bis(phosphine) arrangement. The FAB mass spectra were obtained from 3-nitrobenzyl matrices; assignments are denoted by the most intense peak of isotopic envelopes confirmed by simulation and for salts M⁺ refers to the cationic complex. Microanalytical data were obtained from the Imperial College and University of North London Microanalytical services. Crystal solvates were confirmed by ¹H NMR integration for dichloromethane, however this was not always possible for chloroform solvates due to overlap with phosphine resonances, or adventitious CHCl₃ present in the deuteriated NMR solvent. Light petroleum refers to that fraction of boiling range 40-60 °C. The majority of complexes reported could be recrystallised from mixtures of dichloromethane or chloroform and ethanol.

Preparations

[OsH(Cl)(CO)(BTD)(PPh₃)₂] 2c. The complex [OsH(CO)-(NCMe)₂(PPh₃)₂]ClO₄ (1.00 g, 1.08 mmol) was dissolved in dichloromethane (100 cm³) to give a colourless solution. To this was added a solution of 2,1,3-benzothiadiazole (BTD: 0.44 g, 3.24 mmol) and [NEt₄]Cl (0.54 g, 3.26 mmol) in ethanol (20 cm³). The mixture was heated for 1 h under reflux and then diluted with ethanol (50 cm³). On slow concentration under reduced pressure orange crystals formed, which were filtered off, washed with ethanol (30 cm³) and light petroleum (30 cm³) and dried in vacuo. Yield: 0.96 g (97%). IR: (CH2Cl2) 1982 [v(OsH)], 1914 cm⁻¹ [v(CO)]. (Nujol) 2146, 2129, 1974 [v(OsH)], 1905 [v(CO)], 1720, 1529, 1311, 1276, 925, 871, 848 and 831 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ -15.00 [t, 1 H, OsH, J(HP) = 16.2, 7.09–7.66 (m, 32 H, C₆H₅ + BTD) and 7.82 [d, 2 H, BTD, J(HH) = 9.3 Hz]; ³¹P-{¹H}, δ 20.7. FAB MS: m/z(%) = 780 (4, $[M - BTD]^+$), 741 (9, $[M - C1]^+$) and 713 (3, $[M - Cl - CO]^+$) (Found: C, 56.3; H, 3.8; N, 2.9. Calc. for C₄₃H₃₅ClN₂OOsP₂S: C, 56.4; H, 3.9; N, 3.1%).

 $[OsH(CI)(CS)(BTD)(PPh_3)_2]$ 2d. The complex $[OsH(CS)(NCMe)_2(PPh_3)_2]CIO_4$ (3b·CIO₄: 0.40 g, 0.43 mmol) was dissolved in dichloromethane (50 cm³) to give a colourless solution. 2,1,3-Benzothiadiazole (0.17 g, 1.25 mmol) and $[NEt_4]CI$ (0.21 g, 1.27 mmol) were added as an ethanolic solution (20 cm³). The mixture was heated for 1 h under reflux. Further ethanol (30 cm³) was added and yellow crystals formed on rotary evaporation. These were filtered off, washed with ethanol (30 cm³) and light petroleum (30 cm³) and dried *in vacuo*. Yield:

0.35 g (99%). IR: (CH₂Cl₂) 2121 [ν (OsH)] cm⁻¹; (Nujol) 2134 [ν (OsH)], 1290 [ν (CS)], 1267, 1184, 925, 890, 865 and 838 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ –11.35 [t, 1 H, OsH, J(HP) = 16.2], 7.11–7.70 (m, 32 H, PC₆H₅ + BTD) and 7.88 [d, 2 H, BTD, J(HH) = 7.9 Hz]; ³¹P-{¹H}, δ 21.1. FAB MS: m/z (%) 932 (3, [M]⁺), 967 (4, [M – Cl]⁺), 796 (52, [M – BTD]⁺) and 759 (15, [M – Cl – BTD]⁺) (Found: C, 55.4; H, 3.9; N, 2.9%. Calc. for C₄₃H₃₅ClN₂OsP₂S₂: C, 55.5; H, 3.8; N, 3.0%).

[Os(CH=CHC₆H₄Me-4)Cl(CO)(BTD)(PPh₃)₂] 4a. The complex [OsH(Cl)(CO)(BTD)(PPh₃)₂] 2c (0.57 g, 0.62 mmol) was dissolved in dichloromethane (20 cm³) and 4-ethynyltoluene (0.16 cm³, 0.15 g, 1.26 mmol) added resulting in a purple solution. This was stirred for 10 min and then diluted with ethanol (25 cm³). Purple crystals formed on slow reduction in solvent volume (rotary evaporation) which were filtered off, washed with ethanol (20 cm³), light petroleum (20 cm³) and dried in vacuo. Yield: 0.62 g (97%). IR: (CH₂Cl₂) 1913 [v(CO)], 1606 cm⁻¹; (Nujol) 1899 [v(CO)], 1604, 1571, 1546, 1311, 1270, 923, 906, 875, 838 and 825 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 3.03 (s, 3 H, CH₃), 5.87 [d, 1 H, =CH, $J(H_{\alpha}H_{\beta}) = 16.5$], 6.84, 6.97 $[(AB)_2, 4 H, C_6H_4, J(AB) = 7.9], 7.03-7.44 (m, 34 H, C_6H_5 +$ BTD) and 9.08 [dt, 1 H, OsCH_a, $J(H_aH_B) = 17.2$, $J(H_aP) = 2.6$ Hz]; ${}^{13}C-{}^{1}H$ (CDCl₃-CH₂Cl₂ 1:10), δ 182.2 [t, CO, J(PC) = 8.6], 154.0 (m, C_a), 139.7, 137.9 (d × 2, BTD), 134.0 [t^v, $C_{4}^{2,6}$ (C₆H₅), J(PC) = 4.9], 133.1 [C⁴ (C₆H₄)], 132.5 [t, C_β, J(PC) = 10.2], 131.3 [t^v, C¹ (C₆H₅), J(PC) = 24.3], 129.5 [C¹ (C_6H_5)], 128.8 [s(br), C¹ (C₆H₄)], 128.5 [s, C^{2,6} (C₆H₄)], 127.3 [t^v, C^{3,5} (C₆H₅), J(PC) = 4.3 Hz], 124.1 [C^{3,5} (C₆H₄)], 122.4, 120.5 (BTD) and 20.7 (CH₃); ³¹P-{¹H}, δ -1.0. FAB MS: m/z (%) = 896 (73, [M - BTD]⁺), 779 (22, [M - vinyl - BTD]⁺), 753 $(5, [M - CO - vinyl]^+), 743 (22, [M - Cl - vinyl]^+), 634 (9,$ $[M-PPh_3]^{\scriptscriptstyle +})$ and 606 (23, $[M-CO-PPh_3]^{\scriptscriptstyle +})$ (Found: C, 55.8; H, 3.7; N, 2.4. Calc. for C₅₂H₄₃ClN₂OsOP₂S·1.5CH₂Cl₂: C, 55.4; H, 4.0; N, 2.4%).

[Os(CH=CH₂)Cl(CO)(BTD)(PPh₃)₂] 4b. Complex 2c (0.18 g, 0.17 mmol) was dissolved in dichloromethane (20 cm³) and a stream of ethyne passed through the suspension for 30 s resulting in a red solution. The flask was stoppered and the mixture stirred for 40 min under an atmosphere of ethyne. Ethanol (25 cm³) was then added and the total solvent volume slowly reduced to provide red crystals. These were filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried in vacuo. Yield: 0.14 g (87%). IR: (CH₂Cl₂) 1907 cm⁻¹ [v(CO)]; (Nujol) 1907 [v(CO)], 1658, 1587, 1556, 1531, 1334, 1313, 1272, 1263, 925, 881, 846 and 823 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 4.88 [d, 1 H, H_B, $J(H_{\alpha}H_{\beta}) = 17.6], 5.96 \text{ [dd, 1 H, } H_{\beta'}, J(H_{\alpha}H_{\beta'}) = 10.6, J(H_{\beta}H_{\beta'}) = 10.6, J(H_{\beta'}) = 10.6,$ 2.2 Hz], 7.30, 7.04, 8.05 (m × 3, 34 H, C₆H₅ + BTD) and 8.57 (m, 1 H, H_a); ³¹P-{¹H}, δ -1.3. FAB MS: m/z (%) = 936 (4, $\label{eq:main_state} [M]^{\scriptscriptstyle +}), \ 913 \ (7, \ [M-CO]^{\scriptscriptstyle +}), \ 905 \ (4, \ [M-Cl]^{\scriptscriptstyle +}), \ 805 \ (2,$ $Cl - CO - BTD]^+$) and 713 {4, $[Os(PPh_3)_2]^+$ } (Found: C, 55.7; H, 4.1; N, 2.8. Calc. for C₄₅H₃₇ClN₂OOsP₂S·0.5CH₂Cl₂: C, 55.5; H, 3.9; N, 2.9%).

$[Os{C(C=CC_6H_4Me-4)=CHC_6H_4Me-4}Cl(CO)(BTD)-$

(PPh₃)₂] 4c. Complex 2c (0.27 g, 0.30 mmol) was suspended in tetrahydrofuran (20 cm³) and 1,4-di(*p*-tolyl)butadiyne (0.14 g, 0.61 mmol) added. The reaction was heated under reflux for 1 h under which ethanol (20 cm³) was added. The total solvent volume was reduced to *ca*. 15 cm³ under reduced pressure to provide purple crystals. These were filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried *in vacuo*. Yield: 0.30 g (87%). IR: (CH₂Cl₂) 2164, 2142 [ν (C=C)], 1909 cm⁻¹ [ν (CO)]; (Nujol) 2158, 2136 [ν (C=C)], 1897 [ν (CO)], 1719, 1603, 1587, 1571, 1528, 1504, 1308, 1270, 1175, 924, 892, 875, 846 and 811 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.25, 2.38 (s × 2, 3 H × 2, CH₃), 6.90 [(AB)₂, only one doublet visible, 2 H,

 $\begin{array}{l} \text{CC}_{6}\text{H}_{4}, J(\text{AB}) = 7.9 \text{ Hz}], \ 6.43 \ [\text{s}(\text{br}), 1 \text{ H}, \text{H}_{\beta}], \ 6.96-7.88 \ (\text{m}, 40 \text{ H}, \text{ PC}_{6}\text{H}_{5}, \text{ C}_{6}\text{H}_{4} + \text{ BTD}); \ ^{31}\text{P}-\{^{1}\text{H}\}, \ \delta \ -0.36. \ \text{FAB} \ \text{MS:} \ m/z \ (\%) = 1010 \ (13, [\text{M} - \text{BTD}]^{+}), 975 \ (13, [\text{M} - \text{Cl} - \text{BTD}]^{+}), 779 \ (5, \ \text{M} - \text{BTD} - \text{vinyl}]^{+}), \ 743 \ (14, [\text{M} - \text{Cl} - \text{BTD} - \text{vinyl}]^{+}) \ \text{and} \ 713 \ \{10, [\text{Ru}(\text{PPh}_{3})_{2}]^{+}\} \ (\text{Found:} \ \text{C}, \ 63.8; \ \text{H}, \ 4.3; \ \text{N}, \ 2.3. \ \text{Calc. for} \ \text{C}_{61}\text{H}_{49}\text{ClN}_{2}\text{OOsP}_{2}\text{S:} \ \text{C}, \ 64.0; \ \text{H}, \ 4.3; \ \text{N}, \ 2.4\%). \end{array}$

 $[Os(CH=CHC_6H_4Me-4)(CO)(NCMe)_2(PPh_3)_2]ClO_4$ 5·ClO₄. The complex $[OsH(CO)(NCMe)_2(PPh_3)_2]ClO_4$ 3a·ClO₄ (0.10 g, 0.11 mmol) was dissolved in dichloromethane (10 cm³) and 4ethynyltoluene (0.03 cm³, 0.03 g, 0.26 mmol) added. The mixture was stirred for 3 h and then diluted with ethanol (20 cm³). Brown crystals precipitated on rotary evaporation. These were filtered off, washed with cold ethanol (2 cm³) and light petroleum (20 cm³) and dried. Yield: 0.09 g (79%). NB: The product is slightly soluble in ethanol. IR: (CH_2Cl_2) 1945 cm⁻¹ [$\nu(CO)$]; (Nujol) 2328 [v(NC)], 2292 [v(NC)], 1940 [v(CO)], 1722, 1573, 1548, 1506, 1313, 1091 (T_{d} -ClO₄⁻), 931, 846 and 817 cm⁻¹ $[\delta(C_6H_4)]$. NMR (CDCl₃, 25 °C): ¹H, δ 1.74, 1.85 (s × 2, 3 $H \times 2$, NCCH₃), 2.26 (s, 3 H, CH₃), 5.53 [d, 1 H, =CH_β, $J(H_{\alpha}H_{\beta}) = 17.16], 6.69, 6.96$ [(AB)₂, 4 H, C₆H₄, J(AB) = 7.92], 7.41–7.57 (m, 30 H, C_6H_5) and 7.87 [dt, 1 H, $OsCH_{\alpha}$, $J(H_{\alpha}H_{\beta}) = 17.80, J(HP) = 2.64 \text{ Hz}]; {}^{31}P-\{{}^{1}H\}, \delta 6.2. \text{ FAB MS}:$ m/z (%) = 945 (15, [M]⁺), 902 (20, [M - MeCN]⁺), 859 (42, $[M - 2MeCN]^+$), 831 (32, $[M - 2MeCN - CO]^+$), 779 (40, $[M - vinyl - MeCN]^+$, 743 (100, $[M - vinyl - 2MeCN]^+$) and 713 {53, $[Os(PPh_3)_2]^+$ }.

[Os(CH=CHC₆H₄Me-4)Cl(CO)(NCMe)(PPh₃)₂] 6. (a) The complex [Os(CH=CHC₆H₄Me-4)(CO)(NCMe)₂(PPh₃)₂]ClO₄ **5**·ClO₄ (0.10 g, 0.10 mmol) was dissolved in dichloromethane (10 cm³) and [NEt₄]Cl (0.04 g, 0.24 mmol) added as an ethanolic solution (10 cm³). The mixture was stirred and warmed for 20 min to give a yellow solution. All solvent was removed and the crude product extracted into dichloromethane (10 cm³) and the extracts filtered. On evaporation of all solvent from the filtrate and trituration in diethyl ether (25 cm³), colourless crystals were obtained. These were filtered off, washed with diethyl ether (10 cm³) and light petroleum (10 cm³) and dried *in vacuo*. Yield: 0.06 g (58%).

(b) A sample of the complex [Os(CH=CHC₆H₄Me-4)-Cl(CO)(BTD)(PPh₃)₂] 4a was recrystallised from a mixture of acetonitrile and hexane to which sufficient dichloromethane had been added to ensure homogeneity. Yield quantitative. IR: (CH_2Cl_2) 1920 cm⁻¹ [ν (CO)]; (Nujol) 2022 [ν (NC)], 1909 [v(CO)], 1720, 1604, 1671, 1544, 1311, 890, 846 and 790 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 1.57 (s, 3 H, NCCH₃), 2.24 (s, 3 H, CH₃), 5.72 [d, 1 H, =CH_{β}, $J(H_{\alpha}H_{\beta}) = 17.16$], 6.79, 6.92 [(AB)₂, 4 H, CC_6H_4 , J(AB) = 8.26], 7.27, 7.66 (m × 2, 30 H, PC_6H_5) and 8.65 [dt, 1 H, OsCH_a, $J(H_aH_b) = 17.16$, $J(H_aP) = 2.31$ Hz]; ³¹P-{¹H}, δ -1.1. FAB MS: m/z (%) = 896 (100, [M - MeCN]⁺), 859 (14, [M - vinyl - MeCN]⁺), 779 (22, [M - vinyl -MeCN]⁺), 743 (40, [M - vinyl - Cl - MeCN]⁺), 713 {11, $[Os(PPh_3)_2]^+$ and 606 (25, $[M - MeCN - CO - PPh_3]^+$) (Found: C, 63.5; H, 5.7; N, 1.1. Calc. for C₅₁H₄₈ClNOsOP₂S· C₆H₁₂: C, 63.4; H, 5.7; N, 1.4%).

[Os(CH=CHC₆H₄Me-4)Cl(CO)(CNBu')(PPh₃)₂] 7a. (a) The complex [Os(CH=CHC₆H₄Me-4)Cl(CO)(BTD)(PPh₃)₂] **4a** (0.08 g, 0.08 mmol) was dissolved in dichloromethane (10 cm³) and *tert*-butyl isocyanide (0.01 cm³, 0.01 g, 0.09 mmol) added. The reaction was stirred for 20 min to give a colourless solution. Ethanol (20 cm³) was added and cream crystals precipitated on rotary evaporation. These were filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried. Yield: 0.06 g (77%).

(b) Complex 5·ClO₄ (0.05 g, 0.05 mmol) was dissolved in dichloromethane (10 cm³) and an ethanolic (15 cm³) solution of $[NEt_4]Cl$ (0.02 g, 0.12 mmol) added. The mixture was stirred and heated gently for 20 min and then CNCMe₃ (0.01 cm³,

0.01 g, 0.09 mmol) added. After stirring for 10 min the solvent volume was reduced to give a cream precipitate. This was filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried. Yield: 0.03 g (64%). IR: (CH₂Cl₂) 2144 [ν (CN)], 1943 cm⁻¹ [ν (CO)]; (Nujol) 2142 [ν (CN)], 1943 [ν (CO)], 1889, 1571, 1542, 1307, 971, 937, 890 and 840 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 0.97 (s, 9 H, NCCH₃), 2.25 (s, 3 H, CCH₃), 5.88 [d, 1 H, =CH, *J*(HH) = 18.05], 6.80, 6.92 [(AB)₂, 4 H, C₆H₄, *J*(AB) = 7.92], 7.10–7.39 (m, 34 H, C₆H₅ + BTD) and 7.89 [dt, 1 H, OSCH, *J*(HH) = 18.29, *J*(HP) = 1.97 Hz]; ³¹P-{¹H}, δ – 5.0. FAB MS (R = Bu⁵): *m/z* (%) = 979 (13, [M]⁺), 896 (15, [M - CNR]⁺), 862 (44, [M - vinyl]⁺), 826 (7, [M - Cl - vinyl]⁺) and 779 (3, [M - vinyl - CNR]⁺) (Found: C, 60.6; H, 4.8; N, 1.4. Calc. for C₅₁H₄₈ClNOsOP₂S·0.5CH₂Cl₂: C, 60.6; H, 4.8; N, 1.4%).

 $[Os(CH=CHC_6H_4Me-4)Cl(CO)_2(PPh_3)_2]$ 7b. Complex 4a (0.08 g, 0.08 mmol) was dissolved in dichloromethane (10 cm³) and a stream of carbon monoxide passed through the suspension for 30 s immediately to give a pale yellow solution. The flask was stoppered and stirred for 10 min under an atmosphere of carbon monoxide. Ethanol (25 cm3) was added and on rotary evaporation pink crystals formed which were filtered off, washed with ethanol (20 cm³), hexane (20 cm³) and dried in vacuo. Yield: 0.06 g (84%). IR: (CH₂Cl₂) 2021, 1953 cm⁻¹ [v(CO)]; (Nujol) 2011, 1947 (1935sh) [v(CO)], 1716, 1313, 1278, 977 and 848 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.27 (s, 3 H, CH₃), 5.91 [dt, 1 H, =CH_{β}, $J(H_{\alpha}H_{\beta})$ = 18.31, J(HP) = 2.24], 6.74, $6.95 [(AB)_2, 4 H, C_6H_4, J(AB) = 7.94], 7.33, 7.62 (m \times 2, 30 H,$ C_6H_5) and 7.47 [dt, 1 H, OsCH_a J(HH) = 18.55, J(HP) = 6.18 Hz]; ³¹P-{¹H}, δ 6.45. FAB MS: m/z (%) = 924 (4, [M]⁺), 896 $(100, [M - CO]^+), 807 (15, [M - vinyl]^+), 779 (18, [M - Vinyl]^+), 700 (18, [M - Vinyl]^+)), 700 (18, [M - Vinyl]^+)), 700 (18, [M - Vinyl]^+)), 700 (18, [M - Vinyl]^+))$ vinyl – CO]⁺), 771 (20, [M – Cl – vinyl]⁺), 741 (10, [M – Cl - CO - vinyl]⁺), 606 (30, [M - 2CO - PPh₃]⁺), 451 (15, [OsPPh₃]⁺) and 263 (48, [HPPh₃]⁺) (Found: C, 61.0; H, 4.4. Calc. for C47H39ClO2OsP2: C, 61.1; H, 4.3%).

[Os(CH=CHC₆H₄Me-4)(S₂CNMe₂)(CO)(PPh₃)₂]8. Complex 4a (0.07 g, 0.07 mmol) was dissolved in dichloromethane (20 cm³) and a solution of Na[S₂CNMe₂] (0.02 g, 0.14 mmol) in ethanol (5 cm³) added. The mixture was stirred for 30 min and then diluted with ethanol (20 cm³). Yellow crystals precipitated on rotary evaporation which were filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried in *vacuo*. Yield: 0.06 g (88%). IR: (CH₂Cl₂) 1893 cm⁻¹ [v(CO)]; (Nujol) 1887 [v(CO)], 1718, 1585, 1569, 1521, 1504, 1307, 1255, 1153, 970, 848 and 831 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.20 (s, 3 H, CH₃), 2.31, 2.58 (s × 2, 3 H × 2, NCH₃), 5.52 [d, 1 H, =CH, J(HH) = 17.16], 6.40, 6.80 [(AB)₂, 4 H, C₆H₄, J(AB) = 7.92, 7.25–7.61 (m, 30 H, PC₆H₅), 8.36 [dt, 1 H, $OsCH_a$, $J(H_aH_b) = 17.16$, $J(H_aP) = 2.65$ Hz]; ¹³C-{¹H} (CDCl₃- $CH_2Cl_2 1:10$), $\delta 208.0 (S_2C)$, 186.1 [t, CO, J(PC) = 11.3], 140.8 [s(br), C_a], 134.8 [t^v, $C^{2,6} (C_6H_5)$, J(PC) = 4.9], 133.1 [t^v, C¹ $(C_6H_5), J(PC) = 24.3], 132.8 [t, C_{\beta}, J(PC) = 9.7], 132.3 [C⁴]$ (C_6H_4)], 132.0 [s(br), C¹ (C₆H₄)], 129.2 [C⁴ (C₆H₅)], 128.2 [C^{3,5} (C₆H₄)], 127.2 [t^v, C^{3,5} (C₆H₅), J(PC) = 4.9 Hz], 123.9 $[C^{2,6} (C_6H_4)]$, 37.8, 37.0 (NCH₃) and 20.6 (CH₃); ³¹P-{¹H}, δ 8.2. FAB MS: m/z (%) = 995 (2, [M + H₂O]⁺), 982 (3, [M]⁺), 878 (3, $[M + H_2O - vinyl]^+$) and 407 (56, $[M - vinyl]^+$) (Found: C, 56.1; H, 4.3; N, 1.4. Calc. for C47H45NOOsP2S2. 0.5CHCl₃: C, 56.2; H, 4.5; N, 1.4%).

 $[Os(CH=CHC_6H_4Me-4)(B_3H_8)(CO)(PPh_3)_2]$ 9. Complex 4a (0.30 g, 0.29 mmol) and $[NBu^n_4][B_3H_8]$ (0.09 g, 0.32 mmol) were dissolved in a mixture of dichloromethane (20 cm³) and methanol (10 cm³) and stirred for 4 h. All volatiles were removed under reduced pressure. The crude product was extracted into dichloromethane and passed through diatomaceous earth. The solvent was removed from the filtrate and the residue crystallised by ultrasonic trituration with diethyl ether (25 cm³) to

provide a red-brown microcrystalline solid. This was filtered off, washed with diethyl ether (20 cm³), light petroleum (20 cm³) and dried *in vacuo*. Yield: 0.15 g (57%). IR: (CH₂Cl₂) 2528, 2462 [*v*(BH)], 1957 cm⁻¹ [*v*(CO)]; (Nujol) 2524, 2460, 2148 [*v*(BH)], 2107, 2017 [*v*(BHOs)], 1951 [*v*(CO)], 1585, 1573, 1548, 1506, 1309, 921, 848 and 782 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ –9.70, –8.54 [s(br) × 2, 1 H × 2, µ(OsHB)], –0.57, –0.41, 1.60, 2.30, 3.32, 4.05 [s(vbr) × 6, 6 H, B–H and µ-B₂H], 2.23 (s, 3 H, CH₃), 6.09 [dt, 1 H, =CH, *J*(HH) = 17.80, *J*(HP) unresolved], 6.36, 6.87 [(AB)₂, 4 H, C₆H₄, *J*(AB) = 7.92 Hz] and 7.11–7.61 (m, 30 H, C₆H₅); ³¹P-{¹H</sup>, δ 7.1, 7.9 [AB, *J*(AB) = 300 Hz]; ¹¹B, δ 2.6 (1 B) and –37.2 (2 B, OsB). FAB MS: *m/z* (%) = 902 (25, [M]⁺), 860 (6, [M – B₃H₈]⁺), 744 (80, [M – vinyl – B₃H₈]⁺), 713 {11, [Ru(PPh₃)₂]⁺} and 635 (13, [M – PPh₃]⁺) (Found: C, 59.5; H, 4.8. Calc. for C₄₆H₄₇B₃-OOsP₂·0.5CH₂Cl₂: C, 59.2; H, 5.1%).

 $[Os(CH=CHC_6H_4Me-4)(CO)(PPh_3)_2\{\eta^2-HB(pz)_3\}]$ 10b. Complex 4a (0.30 g, 0.29 mmol) and K[HB(pz)₃] (0.11 g, 0.44 mmol) were dissolved in dichloromethane (20 cm³) and the mixture stirred for 6 h. The purple solution was then filtered through diatomaceous earth and the filtrate diluted with ethanol (20 cm³). A pale purple solid was obtained on reduction in solvent volume. This was filtered off, washed with cold ethanol (2 cm³), light petroleum (20 cm³) and dried in vacuo. Yield: 0.17 g (55%). IR: (CH₂Cl₂) 2466 [v(BH)], 1918 cm⁻¹ [v(CO)] (Nujol) 2468 [v(BH)], 1913 [v(CO)], 1718, 1571, 1544, 1295, 1209, 1058, 1033, 985, 952, 919, 877 and 846 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.31 (s, 3 H, CH₃), 5.67, 5.71 [t × 2, 1 H × 2, H⁴ (pz), $J(HH) = 2.2], 5.89 [d, 1 H, =CH_{\beta}, J(H_{\alpha}H_{\beta}) = 17.07], 6.23 [t, 1 H,$ $H^{4}(pz), J(HH) = 2.0], 6.35 [d, 1 H, H^{3,5}(pz), J(HH) = 2.2], 6.77$ $[(AB)_2, 4 \text{ H}, CC_6H_4, J(AB) = 8.16, NB \text{ one doublet obscured}],$ 6.92 [d, 1 H, $H^{3,5}$ (pz), J(HH) = 2.2], 6.96–7.30 [m, 32 H, $C_6H_5 + 2 H^{3,5}$ (pz)], 7.83 [d, 2 H, H^{3,5} (pz), J(HH) = 1.5] and 8.24 [dt, 1 H, OsCH_a, $J(H_aH_\beta) = 17.32$, $J(H_aP) = 2.49$ Hz]; ³¹P-{¹H}, δ -1.8, 0.8 [AB, J(AB) = 348 Hz]. FAB MS: m/z(%) = 1048 (36, $[M - CO]^+$), 955 (5, $[M - vinyl]^+$), 778 (18, $[M - PPh_3]^+$) and 693 (8, $[M - vinyl - PPh_3]^+$) (Found: C, 61.7; H, 4.5; N, 7.7. Calc. for C₅₅H₄₉BN₆OOsP₂: C, 61.6; H, 4.6; N, 7.8%).

[Os(CH=CHC₆H₄Me-4)(CO)(PPh₃){HB(pz)₃}] 11b. (a) Complex **4a** (0.08 g, 0.08 mmol) and K[HB(pz)₃] (0.03 g, 0.12 mmol) were dissolved in toluene (20 cm³) and the mixture heated under reflux for 5 min and then allowed to cool and filtered through diatomaceous earth. All solvent was removed from the filtrate under reduced pressure. Hexane (25 cm³) was added to the residue and a cream solid obtained by ultrasonic trituration. This was filtered off, washed with hexane (20 cm³) and dried *in vacuo*. Yield: 0.05 g (77%).

(b) The complex $[Os(CH=CHC_6H_4Me-4)(CO)(PPh_3)_2{\eta^2 HB(pz)_{3}$] 10b (0.05 g, 0.05 mmol) was dissolved in toluene (10 cm³) and the reaction heated under reflux for 2 min. The resulting solution was worked up as indicated in (a) above. Yield: 0.03 g (76%). The product can be recrystallised from benzenehexane mixtures. IR: (CH₂Cl₂) 2485 [v(BH)], 1918 cm⁻¹ [v(CO)]; (Nujol) 2424, 2399 [v(BH)], 1920 [v(CO)], 1641, 1290, 1214, 1112, 1047, 966, 919, 883 and 848 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.31 (s, 3 H, CH₃), 4.6 [s(br), 1 H, BH], 5.89, 5.93 $[t \times 2, 1 H \times 2, H^4 (pz), J(HH) = 2.2], 6.07 [t, 1 H, H^4 (pz),$ $J(HH) = 2.2], 6.27 [d, 1 H, =CH_{\beta}, J(H_{\alpha}H_{\beta}) = 17.07], 6.82 [appar$ ent "t" $(2 \times d)$, 2 H, H^{3,5} (pz), J(HH) = 1.9], 7.01–7.35 [m, 20 H, PC_6H_5 , $C_6H_4 + H^{3,5}$ (pz)], 7.68 [apparent "t" (2 × d), 2 H, H^{3,5} (pz), J(HH) = 2.3], 7.78 [d, 1 H, H^{3,5} (pz), J(HH) = 2.0] and 8.54 [dd, 1 H, OsCH_a, $J(H_{\alpha}H_{\beta}) = 17.07$, $J(H_{\alpha}P) = 1.48$ Hz]; ³¹P-{¹H}, δ 11.2. FAB MS: m/z (%) = 812 (100, [M]⁺), 743 (9, [M - pz]⁺), 695 (14, [M - vinyl]⁺), 666 (15, [M - vinyl - CO]⁺), 627 (8, $[M - pz - vinyl]^+$) and 597 {7, $[M - HB(pz)_3]^+$ } (Found: C, 59.4; H, 4.7; N, 9.4. Calc. for C₃₇H₃₄BN₆OOsP·1.5C₆H₆: C, 59.6; H, 4.7; N, 9.1%).

 $[Os(CH=CHC_6H_4Me-4)(CO)(PPh_3)([9]aneS_3)]PF_6$ 12a·PF₆. Complex 4a (0.10 g, 0.10 mmol), 1,4,7-trithiacyclononane (0.03 g, 0.17 mmol) and [NH₄]PF₆ (0.03 g) were dissolved in a mixture of dichloromethane (20 cm^3) and ethanol (10 cm^3). The mixture was heated under reflux for 2 h and then all solvent evaporated. The crude product was extracted into dichloromethane $(2 \times 10 \text{ cm}^3)$ and the combined extracts were filtered through diatomaceous earth and then freed of volatiles under reduced pressure. Diethyl ether (25 cm³) was added and an ochre solid obtained by ultrasonic trituration. This was filtered off, washed with diethyl ether (20 cm³), light petroleum (20 cm³) and dried. Yield: 0.07 g (66%). IR: (CH₂Cl₂) 1964 cm⁻¹ [v(CO)]; (Nujol) 1955 [v(CO)], 1716, 1606, 1575, 1548, 1160 and 833 cm⁻¹ [ν (PF)]. NMR (CDCl₃, 25 °C): ¹H, δ 1.83, 2.14, 2.39, 2.64, 2.78, 3.00 (m × 6, 12 H, SCH₂), 2.26 (s, 3 H, CH₃), 6.64 [d, 1 H, = CH_{β} , $J(H_{\alpha}H_{\beta}) = 17.07$], 6.79, 6.98 [(AB)₂, 4 H, C₆H₄, J(AB) =8.04], 7.30-7.50 (m, 15 H, C₆H₅) and 7.68 [dd, 1 H, OsCH_a, $J(H_{\alpha}H_{\beta}) = 17.07, J(HP) = 5.07 Hz]; {}^{31}P-\{{}^{1}H\}, \delta 6.0. FAB MS:$ m/z (%) = 779 (100, [M]⁺), 751 (4, [M - CO]⁺), 721 (4, [M - $2C_2H_4$]⁺) and 634 (7, [M - CO - vinyl]⁺). For microanalytical purposes the tetraphenylborate salt 12a·BPh₄ was prepared by employing NaBPh4 in place of [NH4]PF6 (Found: C, 63.8; H, 5.3. Calc. for C₅₈H₅₆BOOsPS₃: C, 63.5; H, 5.1%).

 $[Os(C_6H_5)(CO)(PPh_3)([9]aneS_3)]PF_6$ 12b·PF₆. The complex [Os(C₆H₅)Cl(CO)(PPh₃)₂] (0.25 g, 0.29 mmol) was dissolved in a mixture of dichloromethane (20 cm³) and ethanol (10 cm³). Ammonium hexafluorophosphate (0.10 g, 0.61 mmol) and 1,4,7-trithiacyclononane (0.10 g, 0.56 mmol) were added. The mixture was heated under reflux for 10 min and then freed of volatiles. The residue was extracted with dichloromethane $(2 \times 10 \text{ cm}^3)$ and the combined extracts were filtered through diatomaceous earth. The filtrate was diluted with toluene (20 cm³) and the solvent volume slowly reduced (rotary evaporator) to provide colourless crystals. These were filtered off, washed with toluene (20 cm³) and light petroleum (20 cm³) and dried in *vacuo*. Yield: 0.17 g (67%). IR: (CH₂Cl₂) 1963 cm⁻¹ [ν (CO)]; (Nujol) 1967 [v(CO)], 1571, 1311, 1297, 968, 839, 904 and 838 cm⁻¹ [ν (PF)]. NMR (CDCl₃, 25 °C): ¹H, δ 1.80, 2.17, 2.32, 2.45, 2.63–2.93, 3.10–3.18 (m × 6, 12 H, SCH₂), 6.73–6.82 (m, 5 H, RuC₆H₅) and 7.24–7.48 (m, 15 H, PC₆H₅); ³¹P-{¹H}, δ 6.3. FAB MS: m/z (%) 739 (100, [M]⁺), 709 (2, [M - C₂H₄]⁺), 683 (2, $[M - 2C_2H_4]^+), 449 (10, [M - CO - PPh_3]^+), 419 (3, [M - CO - PPh_3]^+), 410 (3, [M - CO - PPh_3]$ $2C_2H_4 - PPh_3]^+$), 390 (3, $[M - 3C_2H_4 - PPh_3]^+$) and 365 (5, $[M - CO - 3C_2H_4 - PPh_3]^+$) (Found: C, 42.8; H, 3.9. Calc. for C₃₁H₃₂F₆OOsP₂S₃: C, 42.2; H, 3.7%).

[OsH(S₂CNMe₂)(CO)(PPh₃)₂]. Complex 3a·ClO₄ (0.26 g, 0.28 mmol) was dissolved in dichloromethane (20 cm³) and a solution of Na[S₂CNMe₂]·2H₂O (0.10 g, 0.70 mmol) in ethanol (5 cm³) added. The mixture was heated under reflux for 10 min and then diluted with ethanol (20 cm³). Colourless crystals precipitated on rotary evaporation which were filtered off, washed with ethanol (20 cm³) and light petroleum (20 cm³) and dried in vacuo. Yield: 0.20 g (8%). IR: (CH2Cl2) 2026 [v(OsH)], 1903 cm⁻¹ [v(CO)]; (Nujol) 2043 [v(OsH)], 1989, 1901 [v(CO)], 1857, 1584, 1571, 1514, 1310, 1260, 1156, 932, 898 and 852 cm^{-1} . NMR (CDCl₃, 25 °C): 1 H, δ –12.93 [t, 1 H, OsH, J(HP) = 18.16 Hz], 2.37 (s, 6 H, NCH₃), 7.27-7.34, 7.69-7.77 (m × 2, 30 H, C_6H_5 ; ³¹P-{¹H}, δ 18.8. FAB MS: m/z (%) = 880 (18, [M + $H_2O]^+$), 865 (57, $[M]^+$), 832 (4, $[M - CO]^+$) and 603 (10, $[M - CO]^+$) PPh₃]⁺) (Found: C, 55.1; H, 4.2; N, 1.7. Calc. for C₄₀H₃₇-NOOsP₂S₂: C, 55.6; H, 4.3; N, 1.6%).

 $[Os(C=CC_6H_4Me-4)Cl(CO)(BTD)(PPh_3)_2]$ 13. (a) Complex 2c (0.20 g, 0.22 mmol) was dissolved in tetrahydrofuran (20 cm³) and $[Hg(C=CC_6H_4Me-4)_2]$ (0.18 g, 0.42 mmol) added. The mixture was heated under reflux for 10 min and then all solvent evaporated. Dichloromethane (20 cm³) was added, the solution filtered through diatomaceous earth and the filtrate diluted with

ethanol (20 cm³). A brick-red solid was then obtained on rotary evaporation. This was filtered off, washed with ethanol (5 cm³), light petroleum (20 cm³) and dried *in vacuo*. Yield: 0.18 g (80%). The product appears partially soluble in ethanol.

(b) Complex 2c (0.10 g, 0.11 mmol) or 4a (0.12 g, 0.11 mmol) and 4-ethynyltoluene (0.30 g) were heated under reflux in tetrahydrofuran (15 cm³) for 1 h. The red solution was diluted with ethanol (30 cm³) and concentrated under reduced pressure to provide crystals of 13. Yield 0.080 g (71%). IR: (CH₂Cl₂) 2109 $[\nu(C=C)]$, 1926 cm⁻¹ $[\nu(CO)]$; (Nujol) 2105 $[\nu(C=C)]$, 1920 [v(CO)], 1720, 1604, 1587, 1529, 1311, 1272, 1216, 925, 877 and 811 cm⁻¹ [δ (C₆H₄)]. NMR (CDCl₃, 25 °C): ¹H, δ 2.29 (s, 3 H, CH₃), 7.41 [(AB)₂, 2 H, C₆H₄, J(AB) = 8.19 Hz, NB second resonance obscured] and 7.03–7.85 (m, 36 H, $PC_6H_5 + C_6H_4 +$ BTD); ${}^{13}C-{}^{1}H$ (CDCl₃-CH₂Cl₂ 1:10), δ 179.8 [t, CO, J(PC) = 8.6], 155.3, 153.8 (BTD), 134.1 [t^v, C^{2,6} (C₆H₅), J(PC) = 4.9], 131.6 [t^v, C¹ (C₆H₅), J(PC) = 24.8], 130.6 [C^{3,5} (C_6H_4)], 129.6 [C⁴ (C₆H₅)], 128.7 [C⁴ (C₆H₄)], 128.5 [C^{2,6} (C₆H₄)], 127.4 [t^v, C^{3,5} (C₆H₅), J(PC) = 4.3], 126.3 [C¹ (C₆H₄)], 122.7, 120.6 (BTD), 116.6 (s, C_{β}), 84.5 [t, C_{α} , J(PC) = 14.0 Hz] and 21.0 (s, CH₃); ³¹P-{¹H}, δ 0.3. FAB MS: m/z (%) = 1031 $(3, [M]^+), 894 (57, [M - BTD]^+), 857 (4, M - Cl - BTD]^+),$ 827 (6, [M - Cl - CO - BTD]⁺), 779 (18, [M - acetylide - $[BTD]^+$) and 743 (14, $[M - Cl - acetylide - BTD]^+$) (Found: C, 58.7; H, 4.0; N, 1.7. Calc. for C₅₂H₄₁ClN₂OOsP₂S·0.5CH₂-Cl₂: C, 58.8; H, 4.0; N, 2.6%).

 $[Os(C=CC_6H_4Me-4)(S_2CNMe_2)(CO)(PPh_3)_2]$ 14. (a) The complex $[OsH(S_2CNMe_2)(CO)(PPh_3)_2]$ (0.10 g, 0.12 mmol) was dissolved in toluene (20 cm³) and $[Hg(C=CC_6H_4Me-4)_2]$ (0.06 g, 0.14 mmol) added. The mixture was heated under reflux for 8 h and then freed of volatiles. The residue was extracted with dichloromethane (20 cm³) and the extracts were filtered through diatomaceous earth. Ethanol (20 cm³) was then added to the filtrate and an ochre solid obtained on rotary evaporation. This was filtered off, washed with ethanol (5 cm³), light petroleum (20 cm³) and dried *in vacuo*. Yield: 0.09 g (77%).

(b) The complex $[Os(C=CC_6H_4Me-4)Cl(CO)(BTD)(PPh_3)_2]$ **13** (0.10 g, 0.10 mmol) was dissolved in dichloromethane (10 cm³) and Na[S₂CNMe₂] (0.03 g, 0.21 mmol) added as an ethanolic solution (10 cm³). The reaction was stirred for 1 h and then the solvent volume reduced. The resultant ochre precipitate was filtered off, washed with ethanol (20 cm³), light petroleum (20 cm³) and dried *in vacuo*. Yield: 0.08 g (82%).

(c) Complex 4a (0.10 g, 0.10 mmol) was dissolved in toluene (10 cm³) and 4-ethynyltoluene (0.1 cm³, excess) added. The reaction was heated under reflux for 5 h and then all solvent evaporated. An ochre precipitate was obtained by ultrasonic trituration in ethanol (20 cm³). This was filtered off, washed with ethanol (20 cm³), light petroleum (20 cm³) and dried. Yield: 0.07 g (72%). IR: (CH₂Cl₂) 2098 [v(C≡C)], 1918 cm⁻¹ [v(CO)]; (Nujol) 2088 [v(C=C)], 1916 [v(CO)], 1718, 1307, 1263, 1216, 1151, 971, 896, 846 and 815 cm⁻¹ [δ (C₆H₄)]. NMR (CDCl₃, 25 °C): ¹H, δ 2.24 (s, 3 H, CH₃), 2.30, 2.40 (s × 2, 3 $H \times 2$, NCH₃), 6.49, 6.83 [(AB)₂, 4 H, C₆H₄, J(AB) = 7.92 Hz] and 7.14-7.92 (m, 30 H, C₆H₅); ¹³C-{¹H} (CDCl₃-CH₂Cl₂ 1:10), δ 209.4 (S₂C), 183.4 [t, CO, J(PC) = 9.7], 134.8 [t^v, C^{2,6} $(C_6H_5), J(PC) = 4.9], 133.4 [t^v, C^1 (C_6H_5), J(PC) = 24.8], 133.3 [C^4 (C_6H_4)], 130.5 [C^{2,6} (C_6H_4)], 129.3 [C^4 (C_6H_5)], 128.1 [C^{3,5}]$ (C_6H_4)], 127.2 [t^v, C^{3,5} (C₆H₅), J(PC) = 4.9], 126.8 [C¹ (C₆H₄)], 114.0 ($\equiv C_{\beta}$), 91.8 [t, $\equiv C_{a}$, J(PC) = 12.9 Hz], 37.2, 36.7 (s × 2, NCH₃) and 20.9 (s, CH₃); ³¹P-{¹H}, δ 7.2. FAB MS: m/z(%) = 980 (8, [M]⁺), 864 (8, [M - acetylide]⁺), 830 (6, $[M - CO - acetylide]^+)$, 718 (19, $[M - PPh_3]^+)$, 691 (12, $[M - CO - PPh_3]^+$), 600 (9, $[M - acetylide - PPh_3]^+$) and 574 $(18, [M - CO - acetylide - PPh_3]^+)$ (Found: C, 59.9; H, 4.4; N, 1.3. Calc. for C₄₉H₄₃OOsP₂S₂: C, 60.2; H, 4.4; N, 1.4%).

 $[Os(C=CC_6H_4Me-4)Cl(CO)(CNBu^t)(PPh_3)_2]$ 15. Complex 13 (0.06 g, 0.06 mmol) was dissolved in dichloromethane (20 cm³)

and CNCMe₃ (0.1 cm³, excess) added. The mixture was stirred for 3 h and all volatiles then removed. Hexane (20 cm³) was added to the residue and an orange-brown solid obtained on ultrasonic trituration. This was filtered off, washed with hexane (20 cm³) and dried in vacuo. The crude product was recrystallised from a mixture of dichloromethane and ethanol. Yield: 0.04 g (71%). IR: (CH₂Cl₂) 2157 [v(CN)], 2105 [v(C=C)], 1961 cm⁻¹ [v(CO)]; (Nujol) 2148 [v(CN)], 2102 [v(C≡C)], 1945 [v(CO)], 1716, 1307, 1232, 1187, 1157, 971, 937, 890, 848 and 815 cm⁻¹ [δ (C₆H₄)]. NMR (CDCl₃, 25 °C): ¹H, δ 0.84 (s, 9 H, NCCH₃), 2.23 (s, 3 H, CCH₃), 6.67, 6.85 [(AB)₂, 4 H, C₆H₄, J(AB) = 7.8 Hz] and 7.08–7.97 (m, 30 H, PC₆H₅); ³¹P-{¹H}, δ -7.1. FAB MS: m/z (%) (R = CMe₃) = 1084 (20, [M + $CNR + CO]^+$, 1057 (50, $[M + CNR]^+$), 977 (62, $[M]^+$), 942 $(29, [M - Cl]^+), 894 (11, [M - CNR]^+), 862 (84, [M - Cl - Cl)^+)$ acetylide]⁺), 827 (22, [M - Cl - acetylide]⁺) and 687 (20, $[M - CO - PPh_3]^+$) (Found: C, 62.7; H, 4.8; N, 1.4. Calc. for C₃₉H₃₃ClP₂RuS: C, 62.4; H, 4.6; N, 1.3%).

[Os(CH=CHC₆H₄Me-4)Cl(CS)(BTD)(PPh₃)₂] 16. The complex [OsH(Cl)(CS)(BTD)(PPh₃)₂] 2d (0.10 g, 0.11 mmol) was dissolved in dichloromethane (20 cm³) and 4-ethynyltoluene (0.02 cm³, 0.02 g, 0.16 mmol) added to give a purple solution. This was stirred for 20 min and diluted with ethanol (25 cm³). Pink crystals precipitated on rotary evaporation. These were isolated, washed with ethanol (20 cm³), light petroleum (20 cm³) and dried in vacuo. Yield: 0.08 g (71%). IR (Nujol): 1897, 1571, 1546, 1527, 1286, 1272 [v(CS)], 1220, 923, 890, 875, 844, 825 and 786 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.30 (s, 3 H, CH₃), 5.98 [d(br), 1 H, = CH_{β} , $J(H_{\alpha}H_{\beta}) = 16.4$], 6.91–7.47 (m, 38 H, PC₆H₅, C₆H₄ + BTD) and 9.01 [d(br), 1 H, OsCH_a, $J(H_{\alpha}H_{\beta}) = 18.1 \text{ Hz}$]; ³¹P-{¹H}, $\delta - 1.0$. FAB MS: m/z (%) = 1047 (2, [M]⁺), 1012 (9, [M - Cl]⁺), 912 (70, [M - BTD]⁺), 877 (12, [M - Cl -BTD]⁺), 795 (41, [M - vinyl]⁺), 757 (20, [M - Cl - vinyl]⁺), 650 (12, $[M - BTD - PPh_3]^+$), 612 (12, $[M - Cl - BTD - PPh_3]^+$) PPh₃]⁺) and 495 {16, [Os(CS)(PPh₃)]⁺} (Found: C, 59.5; H, 4.1; N, 2.7. Calc. for C₅₂H₄₃ClN₂OsP₂S₂: C, 59.5; H, 4.1; N, 2.4%).

 $[Os(\eta^2-SCCH=CHC_6H_4Me-4)Cl(CO)(PPh_3)_2]$ 17. The complex [Os(CH=CHC₆H₄Me-4)Cl(CS)(BTD)(PPh₃)₂] 15 (0.10 g, 0.10 mmol) was dissolved in dichloromethane (10 cm³) and a stream of carbon monoxide passed through the suspension for 30 s. On stirring for 20 min the red solution darkened. All solvent was then removed and a dark red-brown product was obtained by ultrasonic trituration in hexane (25 cm³). This was filtered off, washed with hexane (10 cm³), and recrystallised from a mixture of dichloromethane and ethanol. Yield: 0.07 g (78%). IR: (CH₂Cl₂) 1899 cm⁻¹ [v(CO)]; (Nujol) 1895 [v(CO)], 1714, 1589, 1562, 1326, 1307, 1287, 1241, 970, 919, 890 and 806 cm⁻¹. NMR (CDCl₃, 25 °C): ¹H, δ 2.26 (s, 3 H, CH₃), 6.24, $6.75 [(AB)_2, 4 H, C_6H_4, J(AB) = 7.94], 7.00, 7.04 [AB, 2 H,$ $CH_{\alpha}=CH_{\beta}$, J(AB) = 13.19 Hz], 7.26, 7.74 (m × 2, 30 H, $C_{6}H_{5}$); ³¹P-{¹H}, δ 6.59. FAB MS: m/z (%) = 940 (33, [M]⁺), 905 (44, [M - Cl]⁺), 779 (8, [M - SCCH=CHC₆H₄Me]⁺), 648 (7, $[M - CO - PPh_3]^+$) and 263 (13, $[HPPh_3]^+$) (Found: C, 46.2; H, 4.5. Calc. for C₄₇H₃₉ClOOsP₂S·3CHCl₃: C, 46.3; H, 4.3%).

Acknowledgements

We are grateful to Johnson Matthey Ltd. for a generous loan of ruthenium salts. A. F. H. gratefully acknowledges the award of a Senior Research Fellowship by the Leverhulme Trust and The Royal Society.

References

1 See A. F. Hill, in *Comprehensive Organometallic Chemistry II*, eds. E. W. Abel, F. G. A. Stone and G. Wilkinson, Pergamon, Oxford, 1995, vol. 7.

- 2 L. Vaska, J. Am. Chem. Soc., 1964, 86, 1943.
- 3 M. R. Torres, A. Vegas, A. Santos and J. Ros, *J. Organomet. Chem.*, 1986, **309**, 169.
- 4 N. W. Alcock, J. Cartwright, A. F. Hill, M. Marcellin and H. M. Rawles, J. Chem. Soc., Chem. Commun., 1995, 369.
- 5 A. F. Hill and R. P. Melling, J. Organomet. Chem., 1990, 396, C22.
- 6 J. Montoya, A. Santos, J. Lopez, A. M. Echavarren, J. Ros and A. Romero, J. Organomet. Chem., 1992, 426, 383; J. Montoya, A. Santos, A. M. Echavarren and J. Ros, *ibid.*, 1990, 390, C57.
- 7 A. F. Hill, R. P. Melling and A. R. Thompsett, *J. Organomet. Chem.*, 1991, **402**, C8.
- 8 N. W. Alcock, A. F. Hill and R. P. Melling, *Organometallics*, 1991, 10, 3898; A. F. Hill, *J. Organomet. Chem.*, 1990, 395, C35; J. Cartwright and A. F. Hill, *ibid.*, 1992, 429, 229; J. Cartwright, A. Harman and A. F. Hill, *ibid.*, 1990, 396, C31.
- 9 I. D. Burns, A. F. Hill, A. R. Thompsett, N. W. Alcock and K. S. Claire, *J. Organomet. Chem.*, 1992, 425, C8; N. W. Alcock, I. D. Burns, K. S. Claire and A. F. Hill, *Inorg. Chem.*, 1992, 31, 4606.
 10 J. C. Cannadine, A. F. Hill, A. J. P. White, D. J. Williams and
- 10 J. C. Cannadine, A. F. Hill, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-Ely, *Organometallics*, 1996, **15**, 5409; J. C. Cannadine, A. L. Hector and A. F. Hill, *Organometallics*, 1992, **11**, 2323.
- 11 H. Loumrhari, J. Ros and M. R. Torres, Polyhedron, 1991, 10, 421.
- A. Romero, A. Santos and A. Vegas, Organometallics, 1988, 7, 1988;
 H. Loumrhari, L. Matas, J. Ros, M. R. Torres and A. Perales, J. Organomet. Chem., 1991, 403, 373;
 M. R. Torres, A. Perales,
 H. Loumrhari and J. Ros, *ibid.*, 1990, 385, 379;
 H. Loumrhari,
 J. Ros, M. R. Torres and A. Perales, *Polyhedron*, 1990, 9, 907.
- 13 A. L. Hector and A. F. Hill, J. Organomet. Chem., 1993, 447, C7.
- 14 N. W. Alcock, A. F. Hill and M. S. Roe, J. Chem. Soc., Dalton Trans., 1990, 1737.
- 15 M. C. J. Harris and A. F. Hill, J. Organomet. Chem., 1992, 438, 209; Organometallics, 1991, 10, 3903.
- 16 M. A. Esteruelas and H. Werner, J. Organomet. Chem., 1986, 303, 221; H. Werner, M. A. Esteruelas and H. Otto, Organometallics, 1986, 11, 2295; M. A. Esteruelas, E. Sola, L. A. Oro, U. Meyer and H. Werner, Angew. Chem., Int. Ed. Engl., 1988, 27, 1563; A. Andriollo, M. A. Esteruelas, U. Meyer, L. A. Oro, R. A. Sanchez-Delgado, E. Sola, C. Valero and H. Werner, J. Am. Chem. Soc., 1989, 111, 7431; M. A. Esteruelas, E. Sola, L. A. Oro, H. Werner and U. Meyer, J. Mol. Catal., 1988, 45, 1; 1989, 53, 43; H. Werner, U. Meyer, M. A. Esteruelas, E. Sola and L. A. Oro, J. Organomet. Chem., 1989, 366, 187; H. Werner, M. A. Esteruelas, U. Meyer and B. Wrackmeyer, Chem. Ber., 1987, 120, 11; V. I. Bakhmutov, J. Bertran, M. A. Esteruelas, A. Lledos, F. Maseras, J. Modrego, L. A. Oro and E. Sola, Chem. Eur. J., 1996, 2, 815; A. Edwards, S. Elipe, M. A. Esteruelas, F. J. Lahoz, L. A. Oro and C. Valero, Organometallics, 1997, 16, 3828; M. L. Buil, M. A. Esteruelas, A. M. Lopez and E. Oñate, ibid., 1997, 16, 3169; M. A. Esteruelas, A. V. Gomez, F. J. Lahoz, A. M. Lopez, E. Oñate and L. A. Oro, ibid., 1996, 15, 3423; M. A. Esteruelas, A. V. Gomez, A. M. Lopez and L. A. Oro, ibid., 1996, 15, 878; M. A. Esteruelas, L. A. Oro and C. Valero, ibid., 1995, 14, 3596; M A. Esteruelas, F. J. Lahoz, E. Oñate, L. A. Oro and B. Zeier, ibid., 1994, 13, 1662, 4258.
- 17 G. J. Irvine, W. R. Roper and L. J. Wright, *Abstr. Am. Chem. Soc.*, 1997, **213**, 674.
- 18 C. E. F. Rickard, W. R. Roper, G. E. Taylor, J. M. Waters and L. J. Wright, *J. Organomet. Chem.*, 1990, **389**, 375; W. R. Roper and L. J. Wright, *J. Organomet. Chem.*, 1977, **142**, C1.

- 19 A. F. Hill, M. C. J. Harris and R. P. Melling, *Polyhedron*, 1992, 11, 781.
- 20 R. B. Bedford, A. F. Hill, A. R. Thompsett, A. J. P. White and D. J. Williams, *Chem. Commun.*, 1996, 1059.
- 21 A. Dobson, D. S. Moore, S. D. Robinson, M. B. Hursthouse and L. New, *Polyhedron*, 1985, 4, 1119.
- 22 A. Dobson, D. S. Moore, S. D. Robinson, M. B. Hursthouse and L. New, J. Organomet. Chem., 1979, 177, C8.
- 23 B. E. Cavit, K. R. Grundy and W. R. Roper, J. Chem. Soc., Chem Commun., 1972, 60.
- 24 M. Herberhold and A. F. Hill, J. Organomet. Chem., 1989, 377, 151.
- 25 A. F. Hill and J. D. E. T. Wilton-Ely, Organometallics, 1997, 16, 4517.
- 26 R. A. Sanchez-Delgado, N. Valencia, R.-L.Marquez-Silva, A. Andriollo and M. Medina, *Inorg. Chem.*, 1986, 25, 1106.
- 27 J. Bould, N. N. Greenwood and J. D. Kennedy, J. Organomet. Chem., 1983, 249, 11.
- 28 I. D. Burns, A. F. Hill, A. J. P. White, D. J. Williams and J. D. E. T. Wilton-Ely, Organometallics, 1998, 17, 1552.
- 29 C. Bohanna, M. A. Esteruelas, A. V. Gomez, A. M. Lopez and M. P. Martinez, *Organometallics*, 1997, 16, 4464.
- 30 A. F. Hill, N. W. Alcock, J. C. Cannadine and G. R. Clark, J. Organomet. Chem., 1992, 426, C40.
- 31 A. L. Hector and A. F. Hill, Inorg. Chem., 1995, 34, 3797.
- 32 N. M. Bell, A. J. Blake, R. M. Christie, R. O. Gould, A. J. Holder, T. I. Hyde, M. Schröder and L. J. Yellowlees, J. Chem. Soc., Dalton Trans., 1992, 2977.
- 33 A. Santos, J. Lopez, A. Galan, J. J. Gonzalez, P. Tinoco and A. M. Echavarren, *Organometallics*, 1997, 16, 3482; A. Santos, J. Lopez, J. Montoya, P. Noheda, A. Romero and A. M. Echavarren, *ibid.*, 1994, 13, 3605.
- 34 C. Bohanna, M. A. Esteruelas, J. Herrero, A. M. Lopez and L. A. Oro, J. Organomet. Chem., 1995, 498, 199; M. A. Esteruelas, L. A. Oro and N. Ruiz, Organometallics, 1994, 13, 1507.
- 35 See P. V. Broadhurst, Polyhedron, 1985, 4, 1801.
- 36 G. R. Clark, T. J. Collins, D. Hall, S. M. James and W. R. Roper, J. Organomet. Chem., 1977, 141, C5; T. J. Collins and W. R. Roper, *ibid.*, 1977, 139, C9, C56; 1978, 159, 73.
- 37 C. E. F. Rickard, W. R. Roper, D. M. Salter and L. J. Wright, Organometallics, 1992, 11, 3931.
- 38 G. P. Elliott and W. R. Roper, J. Organomet. Chem., 1983, 250, C5.
- 39 G. P. Elliott, W. R. Roper and J. M. Waters, J. Chem. Soc., Chem. Commun., 1982, 811.
- 40 G. R. Clark, T. J. Collins, K. Marsden and W. R. Roper, J. Organomet. Chem., 1978, 157, C23.
- 41 R. B. Bedford, A. F. Hill, A. J. P. White and D. J. Williams, *Angew. Chem.*, *Int. Ed. Engl.*, 1996, **35**, 95.
- 42 T. J. Collins, K. R. Grundy and W. R. Roper, J. Organomet. Chem., 1982, 231, 161.
- 43 D. J. Cook and A. F. Hill, Chem. Commun., 1997, 955.
- 44 G. R. Clark, K. Marsden, W. R. Roper and L. J. Wright, J. Am. Chem. Soc., 1980, **102**, 6570.
- 45 A. F. Hill and J. D. Woollins, in J. D. Woollins (Editor), *Inorganic Experiments*, Verlag Chemie, Weinheim, 1994, pp. 225–227.
- 46 S. Trofimenko, J. Am. Chem. Soc., 1967, 89, 3170.

Paper 8/05303K